Generate Micro Benchmarks for Velox Backend

This document explains how to use the existing micro benchmark template in Gluten Cpp.

A micro benchmark for Velox backend is provided in Gluten Cpp to simulate the execution of a first or middle stage in Spark. It serves as a more convenient alternative to debug in Gluten Cpp comparing with directly debugging in a Spark job. Developers can use it to create their own workloads, debug in native process, profile the hotspot and do optimizations.

To simulate a first stage, you need to dump the Substrait plan and input split info into two JSON files. The input URIs of the splits should be exising file locations, which can be either local or HDFS paths.

To simulate a middle stage, in addition to the JSON file, you also need to save the input data of this stage into Parquet files. The benchmark will load the data into Arrow format, then add Arrow2Velox to feed the data into Velox pipeline to reproduce the reducer stage. Shuffle exchange is not included.

Please refer to the sections below to learn how to dump the Substrait plan and create the input data files.

Try the example

To run a micro benchmark, user should provide one file that contains the Substrait plan in JSON format, and optional one or more input data files in parquet format. The commands below help to generate example input files:

cd /path/to/gluten/
./dev/buildbundle-veloxbe.sh --build_tests=ON --build_benchmarks=ON

# Run test to generate input data files. If you are using spark 3.3, replace -Pspark-3.2 with -Pspark-3.3
mvn test -Pspark-3.2 -Pbackends-velox -Prss -pl backends-velox -am \
-DtagsToInclude="io.glutenproject.tags.GenerateExample" -Dtest=none -DfailIfNoTests=false -Darrow.version=11.0.0-gluten -Dexec.skip

The generated example files are placed in gluten/backends-velox:

$ tree gluten/backends-velox/generated-native-benchmark/
gluten/backends-velox/generated-native-benchmark/
├── example.json
├── example_lineitem
│   ├── part-00000-3ec19189-d20e-4240-85ae-88631d46b612-c000.snappy.parquet
│   └── _SUCCESS
└── example_orders
    ├── part-00000-1e66fb98-4dd6-47a6-8679-8625dbc437ee-c000.snappy.parquet
    └── _SUCCESS

Run micro benchmark with the generated files as input. You need to specify the absolute path to the input files:

cd /path/to/gluten/cpp/build/velox/benchmarks
./generic_benchmark \
--plan /home/sparkuser/github/oap-project/gluten/backends-velox/generated-native-benchmark/example.json \
--data /home/sparkuser/github/oap-project/gluten/backends-velox/generated-native-benchmark/example_orders/part-00000-1e66fb98-4dd6-47a6-8679-8625dbc437ee-c000.snappy.parquet,\
/home/sparkuser/github/oap-project/gluten/backends-velox/generated-native-benchmark/example_lineitem/part-00000-3ec19189-d20e-4240-85ae-88631d46b612-c000.snappy.parquet \
--threads 1 --iterations 1 --noprint-result --benchmark_filter=InputFromBatchStream

The output should be like:

2022-11-18T16:49:56+08:00
Running ./generic_benchmark
Run on (192 X 3800 MHz CPU s)
CPU Caches:
  L1 Data 48 KiB (x96)
  L1 Instruction 32 KiB (x96)
  L2 Unified 2048 KiB (x96)
  L3 Unified 99840 KiB (x2)
Load Average: 0.28, 1.17, 1.59
***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.
-- Project[expressions: (n3_0:BIGINT, ROW["n1_0"]), (n3_1:VARCHAR, ROW["n1_1"])] -> n3_0:BIGINT, n3_1:VARCHAR
   Output: 535 rows (65.81KB, 1 batches), Cpu time: 36.33us, Blocked wall time: 0ns, Peak memory: 1.00MB, Memory allocations: 3, Threads: 1
      queuedWallNanos    sum: 2.00us, count: 2, min: 0ns, max: 2.00us
  -- HashJoin[RIGHT SEMI (FILTER) n0_0=n1_0] -> n1_0:BIGINT, n1_1:VARCHAR
     Output: 535 rows (65.81KB, 1 batches), Cpu time: 191.56us, Blocked wall time: 0ns, Peak memory: 2.00MB, Memory allocations: 8
     HashBuild: Input: 582 rows (16.45KB, 1 batches), Output: 0 rows (0B, 0 batches), Cpu time: 1.84us, Blocked wall time: 0ns, Peak memory: 1.00MB, Memory allocations: 3, Threads: 1
        distinctKey0       sum: 583, count: 1, min: 583, max: 583
        queuedWallNanos    sum: 0ns, count: 1, min: 0ns, max: 0ns
        rangeKey0          sum: 59748, count: 1, min: 59748, max: 59748
     HashProbe: Input: 37897 rows (296.07KB, 1 batches), Output: 535 rows (65.81KB, 1 batches), Cpu time: 189.71us, Blocked wall time: 0ns, Peak memory: 1.00MB, Memory allocations: 5, Threads: 1
        queuedWallNanos    sum: 0ns, count: 1, min: 0ns, max: 0ns
    -- ArrowStream[] -> n0_0:BIGINT
       Input: 0 rows (0B, 0 batches), Output: 37897 rows (296.07KB, 1 batches), Cpu time: 1.29ms, Blocked wall time: 0ns, Peak memory: 0B, Memory allocations: 0, Threads: 1
    -- ArrowStream[] -> n1_0:BIGINT, n1_1:VARCHAR
       Input: 0 rows (0B, 0 batches), Output: 582 rows (16.45KB, 1 batches), Cpu time: 894.22us, Blocked wall time: 0ns, Peak memory: 0B, Memory allocations: 0, Threads: 1

-----------------------------------------------------------------------------------------------------------------------------
Benchmark                                                                   Time             CPU   Iterations UserCounters...
-----------------------------------------------------------------------------------------------------------------------------
InputFromBatchVector/iterations:1/process_time/real_time/threads:1   41304520 ns     23740340 ns            1 collect_batch_time=34.7812M elapsed_time=41.3113M

Generate Substrait plan and input for any query

First, build Gluten with --build_benchmarks=ON.

cd /path/to/gluten/
./dev/buildbundle-veloxbe.sh --build_benchmarks=ON

# For debugging purpose, rebuild Gluten with build type `Debug`.
./dev/buildbundle-veloxbe.sh --build_benchmarks=ON --build_type=Debug

First, get the Stage Id from spark UI for the stage you want to simulate. And then re-run the query with below configurations to dump the inputs to micro benchmark.

Parameters Description Recommend Setting
spark.gluten.sql.benchmark_task.stageId Spark task stage id target stage id
spark.gluten.sql.benchmark_task.partitionId Spark task partition id, default value -1 means all the partition of this stage 0
spark.gluten.sql.benchmark_task.taskId If not specify partition id, use spark task attempt id, default value -1 means all the partition of this stage target task attemp id
spark.gluten.saveDir Directory to save the inputs to micro benchmark, should exist and be empty. /path/to/saveDir

Check the files in spark.gluten.saveDir. If the simulated stage is a first stage, you will get 3 types of dumped file:

  • Configuration file: INI formatted, file name conf_[stageId]_[partitionId].ini. Contains the configurations to init Velox backend and runtime session.
  • Plan file: JSON formatted, file name plan_[stageId]_[partitionId].json. Contains the substrait plan to the stage, without input file splits.
  • Split file: JSON formatted, file name split_[stageId]_[partitionId]_[splitIndex].json. There can be more than one split file in a first stage task. Contains the substrait plan piece to the input file splits.

Run benchmark. By default, the result will be printed to stdout. You can use --noprint-result to suppress this output.

Sample command:

cd /path/to/gluten/cpp/build/velox/benchmarks
./generic_benchmark \
--conf /absolute_path/to/conf_[stageId]_[partitionId].ini \
--plan /absolute_path/to/plan_[stageId]_[partitionId].json \
--split /absolut_path/to/split_[stageId]_[partitionId]_0.parquet,/absolut_path/to/split_[stageId]_[partitionId]_1.parquet \
--threads 1 --noprint-result

If the simulated stage is a middle stage, you will get 3 types of dumped file:

  • Configuration file: INI formatted, file name conf_[stageId]_[partitionId].ini. Contains the configurations to init Velox backend and runtime session.
  • Plan file: JSON formatted, file name plan_[stageId]_[partitionId].json. Contains the substrait plan to the stage.
  • Data file: Parquet formatted, file name data_[stageId]_[partitionId]_[iteratorIndex].json. There can be more than one input data file in a middle stage task. The input data files of a middle stage will be loaded as iterators to serve as the inputs for the pipeline:
"localFiles": {
"items": [
{
"uriFile": "iterator:0"
}
]
}

Sample command:

cd /path/to/gluten/cpp/build/velox/benchmarks
./generic_benchmark \
--conf /absolute_path/to/conf_[stageId]_[partitionId].ini \
--plan /absolute_path/to/plan_[stageId]_[partitionId].json \
--data /absolut_path/to/data_[stageId]_[partitionId]_0.parquet,/absolut_path/to/data_[stageId]_[partitionId]_1.parquet \
--threads 1 --noprint-result

For some complex queries, stageId may cannot represent the Substrait plan input, please get the taskId from spark UI, and get your target parquet from saveDir.

In this example, only one partition input with partition id 2, taskId is 36, iterator length is 2.

cd /path/to/gluten/cpp/build/velox/benchmarks
./generic_benchmark \
--plan /absolute_path/to/complex_plan.json \
--data /absolute_path/to/data_36_2_0.parquet,/absolute_path/to/data_36_2_1.parquet \
--threads 1 --noprint-result

Save ouput to parquet to analyze

You can save the output to a parquet file to analyze.

cd /path/to/gluten/cpp/build/velox/benchmarks
./generic_benchmark \
--plan /absolute_path/to/plan.json \
--data /absolute_path/to/data.parquet
--threads 1 --noprint-result --write-file=/absolute_path/to/result.parquet

Add shuffle write process

You can add the shuffle write process at the end of this stage. Note that this will ignore the --write-file option.

cd /path/to/gluten/cpp/build/velox/benchmarks
./generic_benchmark \
--plan /absolute_path/to/plan.json \
--split /absolute_path/to/split.json \
--threads 1 --noprint-result --with-shuffle

By default, the compression codec for shuffle outputs is LZ4. You can switch to other codecs by adding one of the following argument flags to the command:

  • –zstd: ZSTD codec, compression level 1
  • –qat-gzip: QAT GZIP codec, compression level 1
  • –qat-zstd: QAT ZSTD codec, compression level 1
  • –iaa-gzip: IAA GZIP codec, compression level 1

Note using QAT or IAA codec requires Gluten cpp is built with these features. Please check the corresponding section in Velox document first for how to setup, build and enable these features in Gluten. For QAT support, please check Intel® QuickAssist Technology (QAT) support. For IAA support, please check Intel® In-memory Analytics Accelerator (IAA/IAX) support

Simulate Spark with multiple processes and threads

You can use below command to launch several processes and threads to simulate parallel execution on Spark. Each thread in the same process will be pinned to the core number starting from --cpu.

Suppose running on a baremetal machine with 48C, 2-socket, HT-on, launching below command will utilize all vcores.

processes=24 # Same value of spark.executor.instances
threads=8 # Same value of spark.executor.cores

for ((i=0; i<${processes}; i++)); do
    ./generic_benchmark --plan /path/to/plan.json --split /path/to/split.json --noprint-result --threads $threads --cpu $((i*threads)) &
done

If you want to add the shuffle write process, you can specify multiple direcotries by setting environment variable GLUTEN_SPARK_LOCAL_DIRS to a comma-separated string for shuffle write to spread the I/O pressure to multiple disks.

mkdir -p {/data1,/data2,/data3}/tmp # Make sure each directory has been already created.
export GLUTEN_SPARK_LOCAL_DIRS=/data1/tmp,/data2/tmp,/data3/tmp

processes=24 # Same value of spark.executor.instances
threads=8 # Same value of spark.executor.cores

for ((i=0; i<${processes}; i++)); do
    ./generic_benchmark --plan /path/to/plan.json --split /path/to/split.json --noprint-result --with-shuffle --threads $threads --cpu $((i*threads)) &
done

Run Examples

We also provide some example inputs in cpp/velox/benchmarks/data. E.g. generic_q5/q5_first_stage_0.json simulates a first-stage in TPCH Q5, which has the the most heaviest table scan. You can follow below steps to run this example.

  1. Open generic_q5/q5_first_stage_0.json with file editor. Search for "uriFile": "LINEITEM" and replace LINEITEM with the URI to one partition file in lineitem. In the next line, replace the number in "length": "..." with the actual file length. Suppose you are using the provided small TPCH table in cpp/velox/benchmarks/data/tpch_sf10m, the replaced JSON should be like:
{
    "items": [
        {
            "uriFile": "file:///path/to/gluten/cpp/velox/benchmarks/data/tpch_sf10m/lineitem/part-00000-6c374e0a-7d76-401b-8458-a8e31f8ab704-c000.snappy.parquet",
            "length": "1863237",
            "parquet": {}
        }
    ]
}
  1. Launch multiple processes and multiple threads. Set GLUTEN_SPARK_LOCAL_DIRS and add –with-shuffle to the command.
mkdir -p {/data1,/data2,/data3}/tmp # Make sure each directory has been already created.
export GLUTEN_SPARK_LOCAL_DIRS=/data1/tmp,/data2/tmp,/data3/tmp

processes=24 # Same value of spark.executor.instances
threads=8 # Same value of spark.executor.cores

for ((i=0; i<${processes}; i++)); do
    ./generic_benchmark --plan /path/to/gluten/cpp/velox/benchmarks/data/generic_q5/q5_first_stage_0.json --split /path/to/gluten/cpp/velox/benchmarks/data/generic_q5/q5_first_stage_0_split.json --noprint-result --with-shuffle --threads $threads --cpu $((i*threads)) &
done >stdout.log 2>stderr.log

You can find the “elapsed_time” and other metrics in stdout.log. In below output, the “elapsed_time” is ~10.75s. If you run TPCH Q5 with Gluten on Spark, a single task in the same Spark stage should take about the same time.

------------------------------------------------------------------------------------------------------------------
Benchmark                                                        Time             CPU   Iterations UserCounters...
------------------------------------------------------------------------------------------------------------------
SkipInput/iterations:1/process_time/real_time/threads:8 1317255379 ns   10061941861 ns            8 collect_batch_time=0 elapsed_time=10.7563G shuffle_compress_time=4.19964G shuffle_spill_time=0 shuffle_split_time=0 shuffle_write_time=1.91651G

TPCH-Q5-first-stage


Back to top

Copyright © 2024 The Apache Software Foundation, Licensed under the Apache License, Version 2.0. Apache Gluten, Gluten, Apache, the Apache feather logo, and the Apache Gluten project logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries.

Apache Gluten is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.

Privacy Policy